
1

Code Clock
Day 4: String Manipulation

Learn.to.code

Programming with C#

@ QUB

2

Introduction to the String Class in C#

In C#, strings are objects of the `String` class, which is part of the System

namespace.

Strings in C# are immutable, meaning their values cannot be changed once they

are created. If you modify a string, a new string object is created.

Creating a String
You can create strings in C# by using string literals:

You can also create a string from an array of characters:

Commonly Used Methods and Properties

Length Property

The `Length` property returns the number of characters in the string.

Accessing Characters

You can access individual characters in a string using index notation:

3

String Concatenation

You can concatenate strings using the `+` operator or the `Concat` method:

You can also use `String.Concat`:

String Interpolation

String interpolation allows you to insert variable values directly into the string:

4

Method/Property Description Static/Instance Example

METHODS

ToLower() Converts all characters to lowercase. Instance greeting.ToLower(); // "hello, world!"

ToUpper() Converts all characters to uppercase. Instance greeting.ToUpper(); // "HELLO, WORLD!"

Contains(string value)

Determines whether the string contains the

specified substring. Instance greeting.Contains("World"); // true

Substring(int startIndex)

Extracts a substring from the string starting at

the specified index. Instance greeting.Substring(7); // "World!"

Substring(int startIndex, int length) Extracts a substring with a specified length. Instance greeting.Substring(7, 5); // "World"

IndexOf(char value)

Returns the index of the first occurrence of the

specified character. Instance greeting.IndexOf('W'); // 7

Trim()

Removes all leading and trailing whitespace

characters. Instance greeting.Trim(); // "Hello, World!"

Replace(string oldValue, string newValue)

Replaces all occurrences of a specified string

with another string. Instance

greeting.Replace("World", "Alice"); //

"Hello, Alice!"

Split(char separator)

Splits a string into an array of substrings based

on a delimiter. Instance greeting.Split(','); // ["Hello", " World!"]

IsNullOrEmpty(string value)

Determines whether the specified string is null

or empty. Static String.IsNullOrEmpty(greeting); // false

IsNullOrWhiteSpace(string value)

Determines whether the specified string is null

or consists only of white-space characters. Static

String.IsNullOrWhiteSpace(greeting); //

false

PROPERTIES

Length Returns the number of characters in the string. Instance greeting.Length; // 13

5

Example Program: Working with Strings

Summary:

- Strings in C# are immutable and require creating a new string whenever a

modification is made.

- Common methods include `ToLower()`, `ToUpper()`, `Substring()`, and

`Replace()`.

- Properties like `Length` and methods like `IndexOf()` are helpful for working with

string manipulation.

6

The following 30 challenges will test your understanding of methods and properties of the
string class

Basic

1. Create a program that takes a user's input and displays the length of the input
string.

2. Write a program that concatenates two strings and displays the result.
3. Create a program that converts a string to all uppercase.
4. Write a program that checks if a string contains a specific word or phrase.
5. Create a program that replaces all occurrences of a word in a string with another

word.
6. Write a program that trims whitespace from the beginning and end of a string.
7. Create a program that extracts a substring from a given string.
8. Write a program that checks if a string starts with a specific prefix.
9. Create a program that counts the number of vowels in a given string.
10. Write a program that reverses a given string.

Intermediate

11. Create a program that checks if a string is a palindrome (reads the same
backward and forward).

12. Write a program that splits a comma-separated string into individual elements
and displays them.

13. Create a program that finds the index of the first occurrence of a specific
character in a string.

14. Write a program that removes duplicate characters from a string.
15. Create a program that formats a string as a phone number (e.g.,

"1234567890" becomes "(123) 456-7890").
16. Write a program that extracts all email addresses from a given string.
17. Create a program that counts the number of words in a given string.
18. Write a program that capitalizes the first letter of each word in a sentence.
19. Create a program that converts a string to a title case.
20. Write a program that replaces HTML tags in a string with appropriate

placeholders.

Expert

21. Create a program that sorts a list of strings in alphabetical order.
22. Write a program that finds the longest word in a sentence.
23. Create a program that encrypts a string using a simple Caesar cipher.
24. Write a program that decodes a string encrypted with a Caesar cipher.
25. Create a program that extracts all URLs from a given string.
26. Write a program that checks if a string is a valid email address.
27. Create a program that parses a CSV (Comma-Separated Values) string into a

list of records.
28. Write a program that generates a random password with a specified length.

7

29. Create a program that calculates the Levenshtein distance between two
strings.

30. Write a program that tokenizes a sentence into words and then sorts the
words based on their length.

